演讲摘要:互联网和物联网时代催生了海量视频大数据,从这些海量视频数据中有效提取知识,迫切需要各种人工智能的技术和手段。因此,如何进行人工智能驱动的视觉计算已经成为当今知识经济时代亟待解决的核心技术问题。本报告主要围绕数据驱动的人工智能学习方法,进行大规模图像/视频数据的视觉特征学习,从目标视觉感知特性、视觉特征表达、深度学习器构建机制、高层语义理解等多维度视角进行了深入剖析,并引入了大规模视觉特征学习所涉及的主要研究问题和技术方法。然后系统地回顾了视觉特征表达和学习领域的不同发展阶段,介绍了近年来我们利用视觉特征学习进行视觉语义分析和理解所做的一系列代表性研究工作及其实际应用。报告的最后将和大家一起探讨涉及视觉特征学习所面临的一些开放性问题和难题。
讲者简介:浙江大学计算机科学与技术学院教授,IET Fellow,IEEE Senior Member,国家杰出青年科学基金获得者,国家青年特聘专家。科技部科技创新2030新一代人工智能重大项目负责人,国家自然科学基金委联合基金重点项目负责人,教育部重点规划研究项目负责人,第七届中国图象图形学学会理事,浙江省杰出青年科学基金获得者,浙江省特聘专家。在国际权威期刊和国际顶级学术会议发表或录用文章180余篇,拥有多篇ESI高被引论文。担任CVPR、ICCV、ECCV、ACM Multimedia等国际顶级会议的Area Chair,担任IEEE TNNLS、IEEE TCSVT、IEEE TMM和IEEE TCDS的Associate Editor,中国图形图像学报青年编委。获得2021年世界人工智能大会SAIL奖,两项最佳国际会议论文奖(ACCV 2010和DICTA 2012),一项最佳学生论文奖(ACML 2017),2019年和2020年中国图象图形学报最佳封面文章和年度优秀论文,ICIP 2015 Top 10%论文奖。获得2021年中国图象图形学学会自然科学奖二等奖,2021年中国电子学会科技进步一等奖,2021年中国产学研合作促进会产学研合作创新与促进奖,两项北京市自然科学技术奖(包括一等奖和二等奖),以及一项中国专利优秀奖。
版权所有:中国计算机学会技术支持邮箱:conf_support@ccf.org.cn